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Abstract. Visual context is used in different forms for saliency computation.
While its use in saliency models for fixations prediction is often reasonedsthis
less so the case for approaches that aim to compute saliencyohjetidevel. We
argue that the types of context employed by these methods lack cleacaitidi
and may in fact interfere with the purpose of capturing the saliency ofevho
visual objects. In this paper we discuss the constraints that differeas tgp
context impose and suggest a new interpretation of visual context ltbasa
the emergence of saliency for more complex, abstract, or multiple \ajedts.
Despite shying away from an explicit attempt to capture “objectness’, (@ay
segmentation), our results are qualitatively superior and quantitativeyr ean
the state-of-the-art.

1 Introduction

The remarkable ability of the visual system to rapidly adteawards salient stimuli en-
ables humans to effortlessly filter visual input and allecatentional resources differ-
entially to salient regions. The computational predictifrthis outcome can facilitate
numerous applications in both the analysis of images {inegmputer vision) and their
synthesis (i.e., in graphics). For example, the need tosadjsual context to a range
of display devices has motivated image/video retargetiml @ntent-aware resizing
techniques that rely on saliency prediction [12, 49, 4, 34, A capacity to predict what
is salient or not has also spared much computational resgimamage classification
[39], retrieval [13], object recognition [43] image and g@compression [15, 50], and
served various other applications such as image thumhg48d, 45], visualization and
symmetrization [47, 18, 42] and object segmentation [2]L, 30

Judging by this variety of applications, the abundance @tierg work on saliency
computation and the need for perceptually-consistent aadrate saliency predictions
are not surprising. We begin this work by taking a closer labthe mechanisms used
to compute saliency and to examine the constraints anddliioits they may pose on
the computational process. Central to our exploration éscitncept of “context” and
part of our goal is to argue that it (i.e., context) alone isfficdent substrate from which
saliency can fully emerge. As we show later, despite usiisgsthgle building block, our
saliency results exceed state-of-the-art performanae fmethods that employ diverse
set of additional tools and mechanisms.
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1.1 Saliency and Context

From an ecological perspective, the saliency of a constitirea visual scene is the
degree to which it demands the allocation of computatioati&fitional) resources in
order to better inquire its role in the visual stimulus. lagtice, as is also acknowledged
in both perceptual [46, 38, 16] and computational [29, 14paats, saliency is strongly
influenced (and often fully determined) by the degree to Witiee constituent stands
out from its context. Combining the two, the saliency of augisconstituent cannot be
determined without knowledge or understanding of the cdritewhich it is embed-
ded. Interestingly, this constituent-context duality tedeen different forms in previous
research of saliency computation.

Saliency is primarily driven in a bottom-up manner, depagdn low level visual
cues in the visual scene. In one of the first biologically pible computational models
for controlling visual attention, Koch and Ullman [31] folled Treisman and Gelade
[46] and introduced the idea of a saliency map. Visual inpdirst decomposed into
several maps encoding early visual features. Spatial cttimpen terms of hierarchical
center-surround differences then determines their cgevee to a unique map encod-
ing saliency at each location. Most subsequent bottom-lignes algorithms followed
this model and compute the saliency of pixel constituensetan their local context
(i.e., neighborhood) at multiple scales [27, 22, 10, 25teAatively, context was also
considered globally, e.g., as a smoothed version of theiardpl[23] or the phase [20]
spectrum of the image. Deviations from the original non-sthed spectrum with re-
spect to this global context are then considered as satieatibns when transformed
back to the spatial domain.

In addition to its categorization as local or global, bottampmsaliency may also be
viewed at the level at which it operates. Unlike the modelstinaed above, that mainly
act spatially in order to reproduce human visual searclegfies or predict visual fixa-
tions, other methods aim at detecting saliency at the hilgivert of objects. While the
(local) visual context used by the first class of methodsdswoaably intuitive, the forms
of visual context employed by the latter (object-level) mygzhes typically remain un-
explained. We argue below that this somewhat obscureoakttip often constrains the
nature of visual objects they may capture in order to measiesaliency.

Considering the scope of saliency as discussed above, wedéfual context of a
constituent as follows:

Definition 1. The visual context of a constituent is the set of visual units in the image
that are used in the computational process that measures its saliency.

This somewhat general definition intentionally lacks aipalar spatial relationship
between the constituent and it context. It is used in Sec. distmuss the contribution
of different types of visual context to detecting salientyh& object level and to point
at the constraints that these types of context may imposen,Tih Sec. 3, we suggest
a novel approach to visual context, which is intuitivelytjfisd and can capture object
saliency for both simple, complex, and abstract objectg.(E) all without explicit
reference to “objectness” or the use of segmentation.

Before beginning our closer look at visual context, oneldister is advised. Like
many others, in this work we too discuss the notion of visoaltext that is associated
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Fig. 1: Salient objects in visual stimuli can have differ@avors. As is typical in vir-
tually all benchmark databases, salient objects can bemumisingletons (panel a).
However, salient objects can be multi-part and heterogehgeanel b), they can have
some multiplicity (panel c), or they can even be completéistiact (like the "hole” in
panel d). By their implied notion of visual context, most qoutational saliency models
impose certain constraints on the types of objects they eadll, with practical suc-
cess limited to the simpler cases. Here we show computeghsglimap (thresholded
at80%) from two state-of-the-art algorithms (CSPR [29] and PCA5]] and our own
method. By modeling context instead of the objects we sicanifily reduce the con-
straints on the nature of objects that may be detected antadis is illustrated by the
better assignment of saliency in all these cases.

with bottom-up saliency. But the latter may be strongly nmatkd or even overridden

by top-down factors as well, including the experience (@egise) of an observer or his
biases due to task definition [26]. Such factors give riseatieicforms of visual context

and modulation of bottom-up saliency by semantic inteti@ts between visual objects
[7,5] or the global structuring of a scene [6, 41, 37, 40]. Sehgypes of context remain
outside the scope of our present work.

2 Background and Related Work

Approaches to salient object detection embrace the sanmnrafta saliency map dis-
cussed above (sometimes with additional steps like segtiem) but employ different

types of visual context (in the sense of the Def. 1) to computd maps (see Fig. 2).
To address the specific contribution of the types of contegtiiwe roughly categorize
the different approaches into the following two groups:

Contrast-Based Saliency:In the first group are approaches that associate saliency
with high contrast between local or regional structuresmiasure this contrast,
the computational mechanisms employ various center-sndstructures. The vi-
sual constituent for which a measure of saliency is compigedgarded as the
center and is spatially surrounded by its context. Someogupies define the sur-
round component independent of visual content, e.g., detaéneighborhood of a
pixel [24,48, 1, 32] or larger regular blocks [33]. In oth@paoaches, the surround-
ing context depends on a grouping process which typicaflylte in a superpixel
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Fig. 2: Different types of visual context (marked in red) ofisual constituent (marked
in blue). (a) The local neighborhood of a pixglb) Pixels at the surround of a larger
scale region(c) k-nearest neighbors of a patch.

representation of the image [29, 11]. Apart from reducingypatational costs, su-
perpixels are preferable due to their capacity to presecally coherent structures
(unlike pixels or predefined blocks). To a certain extergsehstructures facilitate
meaningful central constituents when measuring contregttlaerefore are more
suitable for saliency assignment.

Rarity-Based Saliency: The second group of approaches consider saliency as distinc
ness or rarity. Intuitively, these may signal the importanf a visual constituent
compared with the redundancy of recurring visual infororatiOften in this ap-
proach the context is a global representation of the ensteVinput. A constituent
is then considered salient if its representation does nofocm with the context.
For example, such a representation may be the image meanveaiwr that is
used as reference to measure the saliency at all other [i2xdls Alternative rep-
resentation has considered a smoothed version of the ppast&isn [28] in or-
der to suppress non-salient components in the originatspe@nd thus highlight
salient locations after transforming back to the spatiahdim. In a somewhat re-
lated way, image patches that are highly dissimilar to tkeiearest neighbors were
considered salient as this indicates their dissimilaatalt other patches [19, 11].
Recently, this measure of dissimilarity has been showvialis to patch statistics,
leading to a new measure based on the distance of each pdlehdagerage patch
along the principal components of the patch distributids].[3

An important factor in approaches from both of the groupsvehie the scale at
which saliency is computed. When the context is predefinetiesurround in a cer-
tain center-surround structure or as a global descriptfahe visual input, its scale
may be selected arbitrarily. In case it is determined by aigjrag process, the scale
may be influenced by different input parameters. Howevehdth cases there is no
single appropriate scale. Tightly localized context waegdentially capture edge infor-
mation while context of excessive spatial scale may falsigjgal non-salient areas and
incorporate visual information whose relevance to theegaly of a visual constituent
is unclear. Thus, the saliency map is often a combined re$udomputations across
multiple scales.

Other complexities that visual objects may exhibit poseitamthl constraints to
the nature of visual objects that may be captured duringrseyi computation. Indeed,
the implicit motivation underlying contrast-based satigiis the possibility that at a
certain scale the center part of the center-surround stietill capture the object to
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Fig. 3: Binarized saliency maps demonstrate the challemgeapturing whole salient
objects by contrast (top) and rarity (bottom) based appresicThe two leftmost
columns in each category show example images and our riapsstrast: Saliency
maps in columns ¢ and d are generated as part of saliency tatigpualgorithms,
but are not their final output (which includes additionapsfe They are shown here to
demonstrate how capturing large or discontiguous objsatsmstrained when relying
on regional center-surround. In column ¢ computation iebas rectangular structures
of varying size and aspect ratio [32] whereas in column dhtsagng superpixels were
used to estimate contrast [29]. The constraints are evea rastrictive when only local
considerations are involved [1] as shown in columiRarity: The challenge remains
when relying on rarity aspects of saliency, as demonstrayethe maps in columns
c-e [19, 35, 14]. When the object consists of multiple partdy ¢those with rare ap-
pearance are detected. The bottom map in panel e demosstoatea large object may
render the appearance of its surrounding more rare andaheraore computationally
salient.

allow the comparison of its appearance against its suriagadThis implies that the
object is expected to be compact and spatially continuoosapgactness and spatial
continuity may not be required for rarity-based saliendyiclh assumes that the target
object constitutes few units with rare visual propertiethwespect to the entire visual
input. However, this approach ignores spatial relatiortavden elements forming the
context and may not account for figure-ground relationsatt, fiwhen relying on rarity,
the surrounding of a visual object may be considered moierdalhen the object is
larger. The rarity aspect of saliency is also challengednmiheomes to considering
composite/heterogeneous objects. In these cases, diffgagts of a salient object may
be assigned very different saliency values (see Fig. 3).

The limitations just discussed have led many scientistsseoadditional informa-
tion and computational processes to possibly capture tiveenaf visual objects. Often,
saliency maps are used as input to subsequent segmentait@sges such as adaptive
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thresholding [2] fuzzy-growing [33], compactness and dgranalysis [24], and it-
erative region expansion [52]. Additional consideratiame configural cues such as
convexity [48] or closure [29], or higher-level factors Bugs objectness [11] and vi-
sual organization priors [35, 19]. In other cases, the @it information used is more
explicit and extracted directly from a collection of imadesy., [32]).

While many of the approaches above indeed improve the ofig@ti@ancy mapping,
The difficulty of modeling the nature of visual objects offeads to ad hoc methods
that blur the distinction between bottom-up saliency as@ifplications in subsequent
computations. In this work we propose a completely diffeegproach. Instead of try-
ing to capture the object, we put the emphasis on modelingdhéext that leads to
visual saliency. As we show later, this paradigm shift lefdsuperior saliency results
even if no additional object-specific information or conggignal processes (like seg-
mentation) are employed.

3 Modeling Visual Context to Compute Saliency

Essentially, the same fundamental question is at the basiest approaches to saliency
computation: “To what extent does a visual constituentdstart from its context”. This
question implies that a certain constituent is at hand wtgesaliency is measured or
estimated. When the desired constituent is an object, thisraises the issues described
above that limit the performance. Instead of trying to cepthe object, we wish to con-
sider a somewhat dual question: “What are the characterigtizisual context which
allow to consider the visual information it embeds (be it &jeot or not) as salient”.

To answer this question, we suggest to model visual contsed on the several
characteristics of visual information. Given a particukgpresentation of the units that
compose it (pixels, superpixels, patches, etc...), weidena singlecontext element, or
coxel, to be a region or a subset of the image with the following prtes (see Fig. 4):

Smoothness:Nearby units that compose the coxel are expected to haviaswisual
appearance. The more distant the units, more leeway isedlawtheir similarity.

Apathy to contiguity: A coxel may be either contiguous or not, i.e., it may consggitu
several distinct connected components in the image plane.

Enclosure: To qualify as a saliency coxel, the spatial layout of the erhtlement
should “enclose” (strictly or approximately) some visu#gbirmation.

While many ways can be used to define elementary image units\iroich cox-
els are composed, we elect to do so via the approximatelylailedaoundary adhe-
sive patches such as those obtained from the SLIC supesg@ilgdrithm [3]. Letl” =
{v1,...,v,} be the set of all these patches. Each patch is associated siitgle coxel,
the latter being a subset bf with the properties outlined above. L&the the mapping
from each patch to its coxel, such th@fv;) is the coxel of patchy;. We denote the set
of all coxels byC. Initially, Vi, C'(v;) = {v;} and|C| = N.

LetG = (V, E) be the weightedomplete graph onV’, where the weighiv(E;;) of
eachk);; reflects thecontextual gap between its corresponding patchgsandv;. Two
general factors affect the contextual gap — similarity ipegrance and image distance.
The contextual gap as a whole, and the similarity distanpaiticular, can be evaluated
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in various ways. Here we choose to use a particularly singoie that takes only the
raw color as a measure of appearance and the following blecolar and distance to

express contextual gap
1—axs;
w(Eij) =1- (W) 1)
i

wherec;; ands;; are the appearance (color) distance and the spatial déstatoeen
the pair of patches, respectively, andand 5 control their significanceo = 0.5 and

B = 7 were used). This results with contextual gaps in the rang#][that are lower
for edges linking similar and nearby patches and higherrafise. The choice to ex-
press appearance similarity very simply via color only teirtional since it implies that
the strength of our approach must emerge from the proposestpbof context and the
derived estimation of saliency. Indeed, as we’'ll show, @bilir algorithm can accept ar-
bitrarily sophisticated appearance measures, even tkie oae employed here already
results in better than state-of-the-art saliency perfoiweaeven without endowing it
with segmentation or other additional computational psses).

With the initial coxels set and pairwise contextual gapsveen patches determined,
our algorithm proceeds by repeatedly altering between twopaitational phases. The
first phase enables coxels to extend by gradually mergirgtheg coxels of increasing
contextual gap. The second phase accumulates salieng/faotésual information that
is embedded in (i.e., enclosed by) coxels. Upon convergéheentire image becomes
a single coxel and the saliency map is finalized.

More formally, given the grapld: and a predefined desired quantization level of
contextual gap® = w; < we < ... < w,, = 1, the steps described in Algorithm 1
(and illustrated in Fig. 5) are repeated until a single cixet¢ached. In the first phase,
coxels are extended by merging existing coxels by progrelysielaxing the contextual

Fig. 4: The complexity and diversity of visual context that onodel allows is demon-
strated by this synthetic image. White, colored, and grdgspatches (superpixels)
compose a scene of circles surrounding an “empty” saligiong(cf. Fig. 1d). Context
elements can be regarded at the level of these patches origlier fevel depicting
circles and white background. Although the appearance mifegd units varies around
the empty salient region (e.g., along the curved green paith)away from it (straight
green line), at some level they should be considered as fthie same context element.
In our approach to context this is possible due to the smesthproperty and the lack
of contiguity which allow context elements from differeimias of the salient region to
merge.
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gap allowed. Leveraging the smoothness property, injti@tly nearby and highly sim-
ilar components are considered for merging. Apathy to gaiitif is supported by the
fact that the increased contextual gaggradually permit the merging of more distant
and less similar coxels even if they are disconnected. Tdpajr of patches; andv;
may (and at some point, will surely) belong to the same caxeh that (v,) = C(v;).

Algorithm 1 Contextual Emergence of Saliency

1: S(E;;) :==0 Vi,j = 1..n {Initial votes for saliency bridgés
2:.0:=0
3: while |C| > 1do
{Phase |Extend coxel}
4 for all Eij, S.tw(Eij) < w; andC(vi) =+ C(’Uj) do
5: C=C-C(vy)
6 C(UZ) = C(Uz) U C(Uj)
7:  end for
{Phase II/Accumulate saliency votés
8: for all Eij S.tC’(vi) = C(Uj) do

9 T := {vy, : E;j traversesy, } — {v;,v,}
10: if |T| =|T — C(v;)| then
11: S(E;;)=5(FE;;)+1
12: end if
13:  end for
14: [:=1+1.
15: end while

During the second phase of each iteration, coxels that exdarg to this point are
used to add saliency for the visual information they encldkés is done by considering
“visibility edges” or “saliency bridges”, i.e., edges betn patches of theame coxel
that donot traverse another patch from that coxel. More abstractligrsay bridges
reflect interference in their associated context elememtla@refore suggest that visual
information they traverse deserve a quota of saliency ifalhé spirit of seeking the
“extent to which a visual constituent stands out from itstewti). The longer (i.e.,
more iterations) the relationship between a coxel and itéosrd region endures, the
more “votes” saliency bridges will accumulate to indicate s

It is easy to see that the algorithm always terminates. Siterging coxels reduces
their total number, and since for every edfg there exist some threshold; that
exceeds its contextual gap(E;;), the iteration must end. Indeed, when = 1 all
remaining coxels merge into one final element, no saliengbs are possible any
longer, and the iteration terminates. In practice we represaliency bridges by the
image pixels they traverse and votes are accumulated ire thiagls. Although one
could employ different ways to obtain a dense map from théapadistributed votes
assigned to pixels, we apply a kernel density estimatiod4Pto produce the final
saliency map.
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Fig. 5: Schematic depiction of the two phases of Algorithnfa).Initial coxels (SLIC
superpixels [3]) with their color-coded appearance can{®) Coxels with small con-
textual gaps (initially, those which are very proximate amdilar) are merged to larger,
uniquely labeled components. Note that at this time no seyidoridges occur as any
edge between two patches from the same component traveisteapatch from that
component(c) At a future merging step, the threshold on contextual gaparge
enough to allow distant coxels to merge (implied by simikydls).(d) At this point,
saliency bridges cross image patches from other coxetling#o accumulation of their
saliency measure. To avoid clutter, only selected numbsaligncy bridges are shown.

To conclude, we consider context as relevant to the saliehayisual constituent
when it exhibits certain properties that allow it to form eoéntly while spatially en-
closing the constituent. By considering any visual infotiorathat is not part of a con-
text element as salient, we successfully disregard issusBape, size, contiguity, or
topology, thus significantly reducing the constraints omtlature of objects that may
be detected as salient (see Figs. 1 and 3). We note that fleacabridges mecha-
nism implicitly encourages enclosure, the third properéydefined as desired. Indeed,
saliency is voted for along saliency bridges, and the laitermore frequent for coxels
that better enclose an image region. In addition, sincersai bridges are more likely
to occur closer to the image center, an implicit centerad Bgpredicted. This may in
fact support the biological plausibility of the model andhmgps partially explain why
humans have central bias. Finally, since coxels are apatbatontiguity, the entire ap-
proach can capture abstract salient objects in the form @&%i or “gaps” in a group
of scattered similar elements (cf. Fig. 1).

4 Evaluation

To evaluate our modél we use the five datasets employed in the proposed benchmark
by Boriji et al. [8] and an additional dataset that was pulglisiecently by Yan et al. [51],
all of which are described below.

MSRA: 5000 images of resolutiod00 x 300. For each image, nine users annotated
what they considered the most salient object by a single diagroox.

ASD: 1000 images (taken from the MSRA dasaset). For each image, asingbtator
manually labeled the boundaries of a single salient obfEcs€veral of them in a
few cases).

! Implementation will be made publicly available at http://www.cs.bgu.addWl.
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SED1,SED2 Each contain$00 images, of resolutiorr 300 x 225. The datasets were
designed to avoid ambiguities by only including images tiearly depict a single
(SED1) and exactly two salient objects (SED2). Each of threetators manually
labeled the boundaries of a single or two salient objectpaetively.

SOD: 300 images of resolutiod81 x 321, selected from the Berkeley Segmentation
Dataset (BSD) [36] and labeled by seven annotators. Eadbtaion was shown a
random subset of possible segmentations depicted as biemdeerlapped on the
image and chose the segments composing salient objectkbiynglon them.

ECSSD 1000 images of resolution- 400 x 300, taken from BSD, the VOC dataset
[17] and the internet. Salient objects were manualy segedeny five annotators.
However, the produced ground truth maps are binary.

sssss

04!
SEDL D2 ) MSRA ASD ECSSD  SEDI

Fig. 6: Detection accuracy: (a) AUC scores of the “Top-4"aeithms, GCON, CASD,
CSPR and FUZE, are compared with the rarity based approaentig suggested by
Margolin et al. (PCAS) and our approach. On the MSRA datasetapproach is com-
parable to PCAS which outperforms the “Top-4" algorithmarklisignificant improve-
ments are obtained for the other four datasets. The mosfisagrt improvement is for
the SED2 dataset, specifically designed to include two rsadibjects in every image.
(b) F-Measure scores of the “Top-4" algorithms, PCAS and approach, based on
the precision-recall curve. Excluding the ECSSD datasestlinh the CSPR algorithm
that employs shape prior shows better scores, our appre&eitter than or comparable
to other algorithms on all other datasets despite usingimptlse but raw contextual
consideration.

According to the recent benchmark by Borji et al. [8], the ghast scoring al-
gorithms (henceforth, the “Top-4") to-date are FUZE [115RR [29], CASD [19]
and GCON [14]. Recently, Margolin et al. [35] have shown ttlagiproach (henceforth
PCAS) outperforms these methods on all datasets used faetiehmark in terms of
area under the ROC curve (AUC) scores. We compare our resuliese five state-of-
the-art algorithms, based on the same ranking used in thigal. benchmark [8],
both in terms of AUC scores and in terms of F-measure. Figareh®ws AUC scores
for each dataset, based on true positive rate and falseveasite, by varying a thresh-
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old from 0 to 1 on the normalized saliency maps. Our appragcbinparable to PCAS
on the MSRA dataset and outperforms all five algorithms orotider datasets. In-
terestingly, the most significant improvement is achievedhe SED2 dataset, which
includes two salient objects in every image and departs th&t from the typical sce-
narios of single salient object around the center of the anag

Figure 6b shows the evaluation results according t@tbeision-recall curve (PR),
obtained during the calculation of the ROC curve. The reqabstores are based on the
F-Measure defined a, = (LEe)Precisionxfiecall “ag i previous evaluations [8, 14,
2], we seto = 0.3 to weigh precision more than recall.

While the quantitative evaluation reveals superior resitlts important to note that
this happens despite being done on unequal grounds. Assdstin Sec. 2, almost all
previous approaches to which we compare use additionaépses and biases to im-
prove the raw saliency maps by incorporating object prégefi1], shape priors [29],
face detection [19], or center bias [35]. Our results so fariatentionally stripped of
any such additional computations and yet the proposed xtoiaiecomputation outper-
forms the state-of-the-art (despite also using the moistensimilarity measure). As
we show in Sec. 5, our results can be improved further by parating even simple
additional steps.

5 Further Improvement by Segmentation

While our raw saliency maps already provide superior resitiisinteresting to exam-
ine the possible contribution of additional computatiostalps that are more related to
visual objects. To this end, we follow Cheng et al. [14] and asar saliency maps to
initialize the GrabCut segmentation algorithm (insteathefmanual initialization with
a rectangular region, as in the original GrabCut). Unlike@et al. [14], who initial-
ized GrabCut with binary saliency maps based on a fixed thiéstve sought a way to
compare results across thresholds so they can be evalymiedizthe results presented
in Sec. 4. Hence, the task becomes one of combining GrabGtiniormation from
our raw (and graded) saliency maps in order to improve olveaiency results.

A possible approach to pursue the above would initializebGra with binarized
saliency maps based on all threshold valdies —; < 1. New foreground regions sug-
gested by GrabCut at each threshold (if they indeed emergeldvwthen be assigned
saliency values in a revised map. This still leaves open #récplar strategy of as-
signing saliency values to aggregated foreground regisghe segmentation may not
capture the entire object or it might include non objectoagj careless assignment of
saliency values may significantly reduce true-positiveR)(@r increase false-positives
(FP) and thus reduce performance rather than improving it.

If new foreground regions were assigned their raw saliertyes, then FP rate in
the revised map could not exceed that in the raw map. Indeepirieal results based
on this approach reduced preformance, implying that th&Guasegmentation misses
parts of the objects that contributed to the results (heeceedising TP rate). In order
to enhance the saliency of foreground regions while présgithe saliency of missed
objects parts, we use the following strategy (demonstriat&ig.7). At each threshold,
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Fig. 7: A schematic demonstration of the GrabCut based iwgment. The original

saliency map (a) is thresholded at different levels (b) tailize GrabCut, which may

suggest new foreground regions at each level (c). New regiom accumulated in the
revised map (d). Whenever a region is added to that map, iensglvalues are nor-
malized to the range between the average and the maximumsvaidhat region in the
original map. The remaining regions are assigned theiir@igaliency values (e).

ECSsD  SEDL

Fig. 8: Improvement of our original results using the Grab§ggmentation algorithm.
Scores are presented in terms of AUC (panel a) and in termavidgdsure (panel b).

any suggested foreground region in the revised map is ass$itgraw saliency, normal-
ized to the range between the average and maximum valueatafetfion. Only after
all threshold values are considered, the remaining regiotige revised map (possibly
including missed object parts) are assigned their rawrsaligalues.

Using the procedure above, Fig. 8 shows the improvementre#tpect to our pre-
vious results (based on the same evaluation metrics). Muaeifically, using this seg-
mentation step, original AUC scores improveyl% — 3% and F-measures increase
by ~ 1% — 5%. Since many of the previous algorithms also use additiooalputa-
tions beyond raw saliency, an equal ground comparison tpribeart should consider
these numbers (rather than those from Sec. 4, which already dotperexisting ap-
proaches), that indicate that our algorithm exhibits penkmnce which is better than the
state-of-the-art by a large margin.

Finally, although it is important to consider objective gtitative measures and
results as above, we believe that much of the strength of ppmoach is revealed at
the qualitative level. Indeed, most benchmark databasesafiency detection include
relatively simple saliency scenarios, with one (usualsuaily coherent) salient object
typically at a central position. As we argue, the principleslerlying previous saliency
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Input FUZE[11] CSPR[29] GCON[14] CASD[19] PcAs[35] Ours

Fig.9: Example images and normalized saliency maps (thléstl at30%). The
datasets from which the input images are taken are notecedefthOur saliency maps
seem to coherently indicate the saliency of large and congiigects as a whole (first
two rows) and allow the detection of multiple salient obge@ollowing two rows). In
contrast, no certain level of saliency seems to allow sindi&dection accuracy by state-
of-the-art methods. The last image of a pyramid demonstitiie significance of the
enclosure property of visual context for the detection dtedet salient regions.

algorithms (i.e., contrast-based or rarity-based) petmiandle these cases to some
extent, but constrain the complexity, frequency, and lefabstraction of the detectable
salient objects. In focusing on modeling the context only,approach is more flexible
as indeed was demonstrated already in Fig. 1. Another gtieéitcomparison for novel
images that depict more general saliency scenarios is shokig. 9.

6 An Unavoidable Commentary about Salient Object Databases

The evaluation of any apcroach inherently depends on twectsmpf the dataset to
which it is applied. One aspect is ground truth represeatativith respect to the
datasets above, an apparent problem in this regard is thedlmgibox approach used
for labeling the MSRA dataset which, as already criticizgdAzhanta et al. [2], pro-
vides limited accuracy. A simple case where this approachciearly distort evalua-
tion results is when the area ratio between the object abitading box is small (e.g.,
aboomerang). In such a case, false positives within thedingrbox would wrongfully
enhance performance while a perfect detection would r@s@tlower score. To pro-
vide a more accurate representation of ground truth, Aehantl. [2] proposed the
ASD dataset in which objects are manually segmented. Hawsiwee the data were
labeled by a single annotator, the ground truth saliencysnaa@ binary (as is also the
case for the ECSSD dataset) whereas the evaluated algsrittay produce graded
saliency maps. This discrepancy alone already questiensvidduation reliability.
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A second aspect concerns the visual content of the dat@gtteugh widely used
and having size and stimulus variety, the existing datasetsather restricted in many
other ways. For example, as analyzed by Borji et al. [8], déldestasets have a strong
location-bias and most scenes have low-clutter. An uneésmplication is the over-
fitting of models to existing datasets. Moreover, the sutggeground truth does not
allow to evaluate other levels of saliency. This is demaistt in Borji's benchmark,
where methods aiming at fixation prediction show signifigalotver performance than
methods that seek saliency at the object level.

7 Discussion and Future Directions

We argue that the implicit assumption of having a certainigiconstituent at hand
when its saliency is measured is at the basis of using diffeypes of context to detect
salient objects. The intent for this constituent to be aredbinotivates its modelling

in terms of contrast and rarity. Thus, the nature of visugais that may be captured
is constrained, which necessitates object-specific indtion and additional computa-
tional processes to facilitate better predictions. By nlotgvisual context instead, we
disregard object appearance and reduce these constiiigsallows the saliency of

more complex, abstract, or multiple visual objects to emehg contrast with previous
methods, our approach cannot be categorized as based eastantrarity. Our new

interpretation of context relies on more basic, generalqgipies.

The ability of our model to outperform the state-of-thesaith no explicit use of
object-specific information indicates the dependency ggatkbased saliency computa-
tion on the way context is interpreted in the first place. Thfarther emphasized by the
fact that this superior performance is obtained from lovel@atches and a single, sim-
ple visual feature (i.e., color). Indeed, further develepmtnof the suggested theory for
contextual emergence of saliency could incorporate adtditiand more sophisticated
features and consider pixels as basic context units. Weueethat this would allow to
explore the nature of our context based saliency approaeh\variety of more complex
scenes and perhaps its feasibility for predicting humartiéina. However, according
to the critisism in section 6, this would require to extenel datasets with more general
scenes in terms of complexity, multiplicity, and spatiatdton. In addition, it would
require a new type and more general ground truth that allovevaluate saliency de-
tection across different levels (fixations and objects).hafe that our novel definition
of low-level, non-semantic visual context and the contak&mergence of saliency that
follows it would motivate further work in these directions.
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